
Journal of Geometry and Physics 38 (2001) 183–206

The cohomogeneity one Einstein equations and
Painlevé analysis

Andrew Dancera,b,∗, McKenzie Y. Wang c

a Jesus College, Oxford University, Oxford OX1 3DW, UK
b University of Oxford, Mathematical Institute, 24-9 St. Giles, Oxford OX1 3LB, UK

c Department of Mathematics and Statistics, McMaster University, Hamilton, Ont., Canada L8S 4K1

Received 2 September 2000

Abstract

We apply techniques of Painlevé–Kowalewski analysis to a Hamiltonian system arising from sym-
metry reduction of the Ricci-flat Einstein equations. In the case of doubly warped product metrics on
a product of two Einstein manifolds over an interval, we show that the cases when the total dimension
is 10 or 11 are singled out by our analysis. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we continue our study of reductions of the Einstein equations to ordinary
differential equations [5,6]. One way to perform this reduction is to assume that a Lie group
G acts isometrically on an Einstein manifold (M, g) with generic orbit type G/K of real
codimension one. The Einstein equations then become a constrained Hamiltonian system
of ODEs in a variable transverse to the orbits. The phase space of our Hamiltonian system
is the cotangent bundle of the spaceM(G/K) of G-invariant Riemannian metrics on G/K
equipped with its canonical symplectic structure. We stress that only those trajectories which
lie on the 0-level set of the Hamiltonian are solutions of the Einstein equations.

The situation is simplest if in the isotropy representation of G/K

g/k = p1 ⊕ · · · ⊕ pr
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the summands are pairwise inequivalent asK-modules. To describe our Hamiltonian system
more precisely in this case, we will choose a homogeneous background metric on the
principal orbit. Then any other homogeneous metric on this orbit is obtained by scaling the
background metric on pi by scalars f 2

i for each i. The cohomogeneity one metric on M is
described by a one-parameter family of such metrics; we now view the f 2

i as functions of
the arclength coordinate t on a geodesic orthogonal to the orbits. Now t is the time parameter
for the Hamiltonian flow.

Next we define position variables q = (q1, . . . , qr ) by eqi = f 2
i and letp = (p1, . . . , pr)

be the conjugate momentum variables. We obtain a symplectic isomorphism T ∗(M(G/K))

≈ T ∗
R
r , the latter being equipped with the standard symplectic structure.

To describe the Hamiltonian, let d = (d1, . . . , dr ) where di is the real dimension of pi ,
and let n = ∑r

i=1di be the dimension of the principal orbit. So n + 1 is the dimension of
our Einstein manifold M , whose Einstein constant will be denoted by Λ. Finally, we write
the scalar curvature S of the principal orbit as∑

w∈W
Aw ew·q

for certain nonzero constantsAw, where the index setW is a finite set of vectors inRr (with
integer components) determined by G/K .

In [5] we introduced the Hamiltonian

H = e−(1/2)d·qpJpT + e(1/2)d·q
(
(n− 1)Λ−

∑
w

Aw ew·q
)
, (1.1)

where the symmetric matrix J has components

Jii = 1

n− 1
− 1

di
, Jij = 1

n− 1
, i 	= j.

Note that J defines a nondegenerate quadratic form on R∗r of signature r − 2.
We showed in [5, Section 1], that the Einstein equations are then just the Hamiltonian

flow subject to the constraint H = 0. The components of the equations tangent to the
orbit are Hamilton’s equations for H, while the constraint comes from the component of
the equations normal to the orbit. The equations in mixed directions hold automatically
because we are assuming the summands are pairwise distinct.

We were particularly interested in investigating the existence of conserved quantities for
this constrained flow. More precisely, we sought solutions F, φ of the equation

{F,H} = φH. (1.2)

When the number r of irreducible summands is greater than two, we showed that for
a wide class of orbit types there are no nontrivial solutions which are polynomial in the
quantities pi, eqj . When r = 2, the quadratic form J splits into linear factors and our
techniques for showing nonexistence did not apply. In fact there are some examples known
of conserved quantities of the constrained flow in this case. Moreover, even though the
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Poisson bracket in (1.2) vanishes only on {H = 0}, it was possible to use these conserved
quantities to integrate the Einstein equations by quadratures. These examples are as follows:

(I) W = {(0,−1), (−1, 0)}. In this case G/K is a product of two (nonflat) isotropy
irreducible spaces, or more generally, a product of two Einstein, nonRicci-flat, manifolds
(Yi, gi) of dimension di (i = 1, 2). In particular di > 1. The Hamiltonian flow (with the
constraint) is now the Einstein system for a doubly warped product metric onM of the form

dt2 + f1(t)
2g1 ⊕ f2(t)

2g2.

In [6] we found conserved quantities when Λ = 0 for the following values of d1, d2:

{d1, d2} = {5, 5}, {3, 6}, {2, 8}. (1.3)

Note that in these cases M has dimension 10 or 11, and {d1, d2} are the positive integral
solutions of the condition d2(d1 − 1) = 4d1.

(II) W = {(0,−1), (1,−2)}. If d2 is even, then, for certain values of d1, this case can
be realised geometrically by letting the total space of certain torus bundles over products
of Fano manifolds play the role of G/K (see Remark 7.7).

When d1 = 1, Bérard Bergery [3] and Page and Pope [8,9] found explicit Einstein
metrics. We observed in [6, Section 1] that in this situation, for any Λ, there is a conserved
quantity satisfying (1.2). In addition, in [6, Section 6] we found solutions to (1.2) whenever
Λ = 0 and d1(d2 − 9) = 4d2.

In [6] the above conditions on d1 and d2 arose from an ansatz for constructing solutions
of (1.2) of a particularly simple form. It is not clear, however, whether these conditions are
really necessary for integrability.

Let us now recall the celebrated work of Kowalewski [7] on integrable rotating rigid bodies
in classical mechanics. The method she introduced to help in identifying the integrable cases
has since been developed and modified by many mathematicians, most notably by Painlevé,
and more recently by Ablowitz et al. [1,12]. This group of techniques is called Painlevé
analysis and we shall apply it in this paper to study cases (I) and (II) for arbitrary values of
d1 and d2.

A good exposition of the Painlevé test is given in [1,12]. It applies to any system of ODEs
(indeed also to PDEs), not just Hamiltonian systems. The heuristic idea is that integrability
should be associated with large families of solutions which are meromorphic with movable
singularities. The steps are as follows:

1. Find the leading powers of the solution series in powers of the independent variable s,
where s = 0 is a movable isolated singularity. For the system to pass the Painlevé test,
we need these powers to be integral and at least one of the solution series to blow up.

2. Compute the resonances, i.e. the steps in the expansion at which a free parameter may
enter. This corresponds to the noninvertibility of the linear operator in the recursion
relation for the series expansion.

3. Check the compatibility conditions at each resonance, i.e. check that the recursion rela-
tion can be solved at each resonance.
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4. Check that the solution series actually converge in a deleted neighbourhood of the sin-
gularity.

A system of equations is said to pass the Painlevé test if there is a family of meromorphic
solutions depending on the maximal number of parameters. Such a situation is regarded
as a strong indicator of integrability. However, weaker forms of the Painlevé test, such as
the existence of expansions meromorphic in some rational power of the variable, or the
existence of expansions depending on a large but nonmaximal number of parameters, have
also proved valuable in indicating nice properties of a system even if these may fall short
of full integrability [10,11].

We shall apply Painlevé analysis to the system of equations (2.3)–(2.6), which, together
with the constraint, is equivalent under a change of variables to the Einstein equations for
cases (I) and (II).

In case (I) we find that all resonances are rational precisely when n = 9 or 10, i.e. when
the Einstein manifold has dimension 10 or 11 (for other values we have only two rational
resonances).

In fact (see Theorem 6.1) if n = 9 or 10 then the equations have a three-parameter
family of solutions with convergent Painlevé expansions in powers of a rational power of
s. If d1 = d2 = 5, we actually have a full four-parameter family (see Remark 6.2) for the
particular significance of the values of di given by (1.3)).

In case (II), we find that if d2 is even or if d1(d2 −9) = 4d2, there is a full four-parameter
family of convergent Painlevé expansions in rational powers of s (see Theorem 7.6) (see
Section 7 for further results about nonmaximal families of Painlevé expansions).

In all cases the constraint corresponds to fixing the parameter corresponding to the top
resonance.

Finally, we mention that our analysis applies equally well to the case of Lorentz metrics
of the form −dt2 + gt , where gt is a path of homogeneous metrics on G/K as above. The
only difference is that in the Hamiltonian (1.1) the constants Λ and Aw are then replaced
by −Λ and −Aw. None of our arguments uses the sign of these constants.

2. The equations

In order to apply the Painlevé test, we would like to make symplectic changes of variables
such that the Einstein equations involve only polynomial terms.

To this end we first replace the Hamiltonian flow of (1.1) subject to the constraint H = 0
by an equivalent flow of a slightly simpler Hamiltonian H̄ subject to the constraint H̄ = 0.
We begin by diagonalising the quadratic form defined by J .

Choose a matrix C such that

C−1J (C−1)T = diag(µ1, . . . , µr).

Next we choose new symplectic coordinates α, β defined by

q = Cα, β = pC,
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and define vectors d̄, w̄ by

d̄ = dC, w̄ = wC.

Then

H = e−(1/2)d̄·α
r∑

i=1

µiβ
2
i + e(1/2)d̄·α

(
(n− 1)Λ−

∑
w

Aw ew̄·α
)
.

Note that e(1/2)d̄·α represents the volume of the principal orbit relative to the volume of the
background metric. Hamilton’s equations are now

α̇k=2 e−(1/2)d̄·αµkβk, β̇k=e(1/2)d̄·α
(∑

w

(d̄ + w̄)kAw ew̄·α − d̄k(n− 1)Λ

)
+ d̄k

2
H.

We can now introduce a new independent variable s by

dt

ds
= e(1/2)d̄·α.

Denoting differentiation with respect to s by a prime, the equations become

α′
k = 2µkβk, (2.1)

β ′
k = ed̄·α

(∑
w

(d̄ + w̄)kAw ew̄·α − d̄k(n− 1)Λ

)
+ d̄k

2
H̄, (2.2)

where H̄ = e(1/2)d̄·αH.
Now, when H (and hence H̄) is zero, Eqs. (2.1) and (2.2) are exactly Hamilton’s equations

for H̄. We have therefore deduced

Proposition 2.1. The Einstein equations are equivalent to the Hamiltonian flow of H̄ with
the constraint H̄ = 0.

Remark 2.2. The Hamiltonian H̄ is somewhat similar to that for r particles with exponential
nonnearest neighbour interactions first introduced by Bogoyavlensky [4] and analysed in
detail by Adler and van Moerbeke [2]. Two important differences, however, are that our
kinetic energy term has Lorentz signature and that our potential energy term need not have
exactly r+1 terms with positive coefficients. Nevertheless, the change of variables described
in [2, p. 89], can be modified to bring our equations into a nice form for the Painlevé test.

We now specialise to the situation when the number of summands r is equal to two,
and, furthermore, the setW of weight vectors in the formula for the scalar curvature of the
principal orbit has exactly two members, which will henceforth be denoted by v and w.

As mentioned earlier, before we apply the Painlevé test we would like to further change
coordinates so that the equations involve polynomial rather than exponential terms. Ac-
cordingly, we let

x1 = e(d̄+v̄)·α, x2 = e(d̄+w̄)·α,
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where v̄ = vC and w̄ = wC, and let yi denote the corresponding momentum coordinates.
Denoting by U the matrix(

d1 + v1 d2 + v2

d1 + w1 d2 + w2

)
,

and letting Ū = UC, we find that(
α1

α2

)
= Ū−1

(
log x1

log x2

)
.

The momentum coordinates y satisfy

yi =
∑

jβj Ū
ji

xi
,

and so

β = ( x1y1 x2y2 )Ū .

If we define

ξ = −dU
−1
,

we obtain

ξ1 log x1 + ξ2 log x2 = −d̄ᾱ,
so

ed̄·α = x
−ξ1
1 x

−ξ2
2 .

Writing A1, A2 for Av , Aw respectively, we see that the modified Hamiltonian is now

H̄ = ( x1y1 x2y2 )E

(
x1y1

x2y2

)
− A1x1 − A2x2 + (n− 1)Λx−ξ1

1 x
−ξ2
2 ,

where E = UJUT. In particular, the entries of E can be easily computed using the formula
just before Theorem 4.27 in [5].

Therefore, in the (x, y) coordinates Hamilton’s equations become

x′
1 = 2E11x

2
1y1 + 2E12x1x2y2,

x′
2 = 2E12x1x2y1 + 2E22x

2
2y2,

y′
1 = −2E11x1y

2
1 − 2E12x2y1y2 + A1 + (n− 1)Λξ1x

−ξ1−1
1 x

−ξ2
2 ,

y′
2 = −2E12x1y1y2 − 2E22x2y

2
2 + A2 + (n− 1)Λξ2x

−ξ1
1 x

−ξ2−1
2 .

For the remainder of the paper we specialise to the Ricci-flat case. Setting ui = xiyi , and
rescaling xi to set the constants Ai to 1, we finally obtain the equations

x′
1 = 2x1(E11u1 + E12u2), (2.3)
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x′
2 = 2x2(E12u1 + E22u2), (2.4)

u′
1 = x1, (2.5)

u′
2 = x2, (2.6)

where the matrix E is given by

(
E11 E12

E12 E22

)
=



d1 − 1

d1
1

1
d2 − 1

d2


 (2.7)

in case (I) and by

E =



d2 − 1

d2

d2 − 2

d2

d2 − 2

d2

d1d2 − d2 − 4d1

d1d2


 (2.8)

in case (II). The modified Hamiltonian becomes

H̄ = E11u
2
1 + 2E12u1u2 + E22u

2
2 − x1 − x2. (2.9)

(In the Lorentz case, some of the constants Ai may be negative. Our rescaling means that
the corresponding xi are negative.)

Remark 2.3. Note that while xi, ui are not symplectic coordinates for the standard sym-
plectic structure on T ∗

R
2+, they are symplectic coordinates for the variable coefficient

symplectic structure

Ω = x−1
1 dx1 ∧ du1 + x−1

2 dx2 ∧ du2,

and the above equations are the canonical equations for H̄ in this symplectic structure. The
same remark applies when Λ is nonzero.

We shall first study case (I) of Section 1, i.e. when v = (−1, 0), w = (0,−1). In this
case we look for Ricci-flat metrics of the form

dt2 + f1(t)
2g1 ⊕ f2(t)

2g2,

where gi are Einstein metrics on spaces Yi of real dimension di > 1. (If di = 1 for some
i then Ai = 0 and we are in a situation considered by Bérard Bergery [3].) We leave case
(II) to Section 7.

Remark 2.4. In terms of these new variables, the conserved quantities found in [6] are

F = (−E11(u1 + 1
2u2)

2 + x1)x
K1
1 x

K2
2 ,
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where

K1 = − (d1 + 1)(d2 − 1)

2(n− 1)
, K2 = (d1 − 1)(d2 − 2)

2(n− 1)
,

and (d1, d2) = (3, 6), (2, 8) or (5, 5).
We can check this directly from (2.3)–(2.6). We have chosen K1,K2 so that

−K1E11 −K2E12 = 1
2E11, (2.10)

−K1E12 −K2E22 = E22. (2.11)

Moreover, for these values of di we have the relation

1
2E11 = 2(1 − E22). (2.12)

Now differentiating F , and using (2.3)–(2.6) and (2.10)–(2.12), we find after some calcu-
lation that

F ′ = E11(u1 + 1
2u2)x

K1
1 x

K2
2 H̄.

So F is a conserved quantity for the flow on the hypersurface H̄ = 0.

3. Leading powers

We shall now begin the Painlevé analysis of equations (2.3)–(2.6) in case (I). Let us first
find the possible leading powers for expansions for xi, ui about a singularity at s = 0. We
put

x1 = a0s
M1 + · · · , x2 = b0s

M2 + · · · ,
u1 = c0s

N1 + · · · , u2 = e0s
N2 + · · · .

Substituting these into (2.3)–(2.6), we find the potential dominant terms on the left- and
right-hand sides of the equations are, respectively,

a0M1s
M1−1 : 2E11a0c0s

M1+N1 , 2E12a0e0s
M1+N2 , (3.1)

b0M2s
M2−1 : 2E12b0c0s

M2+N1 , 2E22b0e0s
M2+N2 , (3.2)

c0N1s
N1−1 : a0s

M1 , (3.3)

e0N2s
N2−1 : b0s

M2 , (3.4)

provided that Mi,Ni 	= 0. If some of the powers Mi or Ni are zero, the right-hand side
terms must be modified.

Lemma 3.1. None of the leading powers is zero.

Proof. We distinguish two cases.
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Case 1 (N1 	= N2). Without loss of generality we take N1 < N2.

1. We first claim that the leading power of u1 is nonzero.
Assume for a contradiction that u1 has zero leading power, i.e.N1 = 0. Now if xj does

not have zero leading power, then (3.1) or (3.2) implies Mj − 1 = Mj + N1, giving a
contradiction. So in fact x1, x2 have zero leading power also. Hence u2 must be singular,
and from (2.9) we see that this contradicts the fact that the Hamiltonian is constant in s.

2. Next, we claim that either both x1, x2 have zero leading power or neither does.
For if xi has zero leading power, then let Ri denote the lowest nonzero power in its

expansion. It follows that:

Mi +N1 = Ri − 1 > Mi − 1,

so N1 > −1.
But if xj does not have zero leading power, thenMj −1 = Mj +N1, and soN1 = −1.

3. The remaining possibilities for the variables with zero leading power are {u2, x1, x2},
{x1, x2}, {u2}. In the first case u1 must be singular so, as above, we get a contradiction
by considering the Hamiltonian (2.9). In the second case (3.3) and (3.4) imply that
Nj − 1 = Mj = 0 (j = 1, 2) so there is no singularity, which is a contradiction.

In the third case (3.1)–(3.3) imply that

N1 = −1, M1 = −2, −1 = E11c0, M2 = 2c0.

As E11 = 1 − 1/d1, we see that c0 < −1, so M2 < −2. Letting S2 denote the first
nonzero power in the expansion of u2, Eq. (3.4) tells us that S2 − 1 = M2, so M2 > −1
and again we have a contradiction.

Case 2 (N1 = N2(= N)).

1. If N 	= 0, then (3.3) and (3.4) imply N − 1 = Mj . So if we have a zero leading power
then N = 1, M1 = M2 = 0 and none of the functions will have a singularity.

2. If N = 0 then without loss of generality M1 	= 0, so we have an unbalanced power of
M1 − 1 on the left-hand side of (3.1).

Proposition 3.2. The possible leading terms in our expansion are

x1 = a0s
−2 + · · · , x2 = b0s

−2 + · · · ,
u1 = c0s

−1 + · · · , u2 = e0s
−1 + · · · ,

where

a0

b0

c0

e0


 = 1

n− 1




d1

d2

−d1

−d2


 .
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Proof.

1. As all the Mi , Ni are nonzero, we deduce from (3.3) and (3.4) that

Mi = Ni − 1 (i = 1, 2).

2. If N1 	= N2, we may assume without loss of generality that N1 < N2. Then

Mi − 1 = Mi +N1,

so
N1 = −1, M1 = −2.

Equating coefficients of the dominant terms in (3.1), we see that

E11c0 = −1,

so, as E11 = 1 − 1/d1, we deduce that c0 < −1. Equating terms in (3.2) implies M2 =
2E12c0 = 2c0 < −2, and, using (1), this contradicts our assumption that N2 > N1.

3. If N1 = N2 = N , we deduce from the above (1) and (3.1) or (3.2) that

N = −1, M1 = M2 = −2.

(Note that E11c0 +E12e0 and E12c0 +E22e0 both cannot be zero as Eij is nonsingular.)

Equating coefficients then yields(
E11 E12

E12 E22

)(
c0

e0

)
=
(−1

−1

)
,

and

c0 = −a0, e0 = −b0,

which may be solved to give the desired expressions for a0, b0, c0, and e0. �

Remark 3.3. We can also ask whether there exists a solution with a Painlevé expansion
around a singularity at infinity. Taking 1/s as our new coordinate and studying the resulting
equation around s = 0, we find using similar arguments to those above that it is impossible
to make the leading powers balance, so no such expansion exists.

4. Resonances

We next find the resonances, i.e. the steps in the expansion for our variables at which free
parameters may enter.

We put

x1 =
∞∑
j=0

aj s
−2+ j/Q, x2 =

∞∑
j=0

bj s
−2+ j/Q,

u1 =
∞∑
j=0

cj s
−1+ j/Q, u2 =

∞∑
j=0

ej s
−1+ j/Q,

where Q is an integer to be determined later.



A. Dancer, M.Y. Wang / Journal of Geometry and Physics 38 (2001) 183–206 193

Substituting the above into (2.3)–(2.6) leads to the recursion relations (for j > 0):


j/Q 0 −2E11a0 −2E12a0

0 j/Q −2E12b0 −2E22b0

−1 0 −1 + j/Q 0

0 −1 0 −1 + j/Q







aj

bj

cj

ej




=




2E11

(∑j−1
i=1 aicj−i

)
+ 2E12

(∑j−1
i=1 aiej−i

)
2E12

(∑j−1
i=1 bicj−i

)
+ 2E22

(∑j−1
i=1 biej−i

)
0

0



. (4.1)

We will denote the 4 × 4 matrix by X(ν), where ν = j/Q. The resonances are exactly the
values of ν for which X(ν) is singular. We calculate that

detX(ν) = ν4 − 2ν3 + ων2 + (1 − ω)ν − 2(1 + ω), (4.2)

where

ω = 2

n− 1
− 1.

This quartic factorises as

(ν + 1)(ν − 2)

(
ν2 − ν + 2

n− 1

)
. (4.3)

Note that the resonance ν = −1 corresponds, as usual, to the freedom in the position of
the singularity, which we have placed at s = 0 for convenience. Also notice that the set of
resonances is preserved by the map ν �→ 1−ν. In fact the resonances ν = −1, 2 correspond
to ν(ν − 1) = 2, while the other two resonances correspond to ν(ν − 1) = −2/(n− 1).

The discriminant of the quadratic factor in (4.3) is (n− 9)/(n− 1), so we have to check
when the square root of this is rational; equivalently we have to check when (n− 9)(n− 1)
is a perfect square.

Lemma 4.1. Let n be a positive integer. Then (n − 9)(n − 1) is a perfect square only if
n = 9 or 10.

Proof. Suppose

(n− 9)(n− 1) = m2 (n ∈ Z+,m ∈ Z+ ∪ {0}).
Let m have prime decomposition

m = 280p
81
1 · · ·p8ll .
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After reordering, we have

n− 9 = 2jp281
1 · · ·p28u

u , n− 1 = 2kp28u+1
u+1 · · ·p28l

l ,

where j + k = 280 and min(j, k) ≤ 3.
If j, k are both even, then n − 9 and n − 1 are squares, so n = 10. If j, k are both odd,

then 1
2 (n− 9) and 1

2 (n− 1) are squares, so n = 9. �

We summarise our conclusions as follows.

Theorem 4.2. In all cases of (I), two of the resonances are −1 and 2.

1. If n < 9, then the other two resonances are complex.
2. If n = 9, they are both 1

2 .
3. If n = 10, they are 1

3 and 2
3 .

4. If n > 10, they are real but irrational.

5. Compatibility conditions

We shall now focus on the cases of (I) when the resonances are rational, i.e. n = 9, 10.
The values of the resonances in these cases suggest that we seek expansions in powers of
s1/2 if n = 9, and powers of s1/3 if n = 10. That is, in (4.1) we take Q = 2 for n = 9 and
Q = 3 for n = 10.

We must check whether the recursion relations for these expansions can be solved at the
steps corresponding to resonances. For future reference, we describe the kernel ofX(ν) and
its transpose when ν is a resonance.

If ν(ν − 1) = 2, then kerX(ν) and kerX(ν)T are spanned by

(ν − 1)d1

(ν − 1)d2

d1

d2


 ,




1

1

ν

ν


 ,

respectively.
If ν(ν − 1) = −2/(n− 1) then kerX(ν) and kerX(ν)T are spanned by

ν − 1

1 − ν

1

−1


 ,




d2

−d1

νd2

−νd1


 ,

respectively.

Case 1 (n = 9). In this case we have Q = 2. The resonances ν = 1
2 and ν = 2 therefore

correspond to the stages j = 1 and j = 4 in the recursion.
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At j = 1 we just take (a1 b1 c1 e1)
T to be an element of the kernel of X( 1

2 ). For the
remaining values of j except for j = 4, X( 1

2j) is invertible. So the only question is
whether the recursion can be solved at j = 4.

We claim that this is always possible. In fact the following lemma only uses the condition
j = 2Q.

Lemma 5.1. Assuming that the compatibility conditions at all earlier steps hold, then the
compatibility condition at the top resonance ν = 2 also holds.

Proof. We need to show that the vector on the right-hand side of (4.1) is orthogonal to the
kernel of X(2)T, where j = 2Q. This is equivalent to the vanishing of

E11

j−1∑
i=1

aicj−i + E12

j−1∑
i=1

aiej−i + E12

j−1∑
i=1

bicj−i + E22

j−1∑
i=1

biej−i ,

which, by the last two rows of (4.1), equals

E11

j−1∑
i=1

(
i

Q
− 1

)
cicj−i + E12

j−1∑
i=1

(
i

Q
− 1

)
ciej−i

+E12

j−1∑
i=1

(
i

Q
− 1

)
eicj−i + E22

j−1∑
i=1

(
i

Q
− 1

)
eiej−i .

The first and fourth sums on the right-hand side above are 0. To see this, we have for the
first sum

j−1∑
i=1

(
i

Q
− 1

)
cicj−i =

j−1∑
i=1

(
j − i

Q
− 1

)
cj−ici

=
j−1∑
i=1

(
2 − i

Q
− 1

)
cj−ici = −

j−1∑
i=1

(
i

Q
− 1

)
cicj−i .

A similar computation applies to the fourth sum. Finally, the second and third sums cancel
each other since

j−1∑
i=1

(
i

Q
− 1

)
ciej−i =

j−1∑
i=1

(
j − i

Q
− 1

)
cj−iei =

j−1∑
i=1

(
1 − i

Q

)
cj−iei . �

So we have a three-parameter family of formal solutions; one parameter comes from the
position of the singularity, the other two from the resonances at j = 1, 4 (i.e. at ν = 1

2 , 2).
(in order to obtain a family of solutions involving the full four parameters one also needs
to consider solutions with logarithmic terms).

Case 2 (n = 10). In this case, Q = 3, and the positive resonances are ν = 1
3 ,

2
3 , 2,

corresponding to the steps j = 1, 2, 6 in the recursion.
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The recursion relation at j = 1 just says that (a1 b1 c1 e1)
T lies in the kernel of X( 1

3 ). So
we take


a1

b1

c1

e1


 = λ




− 2
3

2
3

1

−1


 ,

where λ is an arbitrary scalar.
The compatibility condition at j = 2 is

( d2 −d1
2
3d2 − 2

3d1 )




2a1(E11c1 + E12e1)

2b1(E12c1 + E22e1)

0

0


 = 0.

If λ is nonzero, this simplifies to

d2(E11 − E12)+ d1(E12 − E22) = 0,

which is equivalent to

d1 = d2.

So if d1 = d2 = 5, then we can always solve at j = 2. Otherwise, we can only solve if
we take the parameter λ from the step j = 1 to be zero.

It remains to check solvability at the top resonance j = 6. But this again follows from
Lemma 5.1.

So if d1 = d2 = 5, we have four parameters for our series solution (one from each
resonance and one for the position of the singularity). For other values of d1, d2 with n = 10
we only have three parameters, from the singularity position and the resonances ν = 2

3 , 2.

6. Convergence and conclusions

We shall now check that the formal series solutions obtained in the previous section
actually represent genuine solutions on some open set.

We can check from our expression for X(ν) that the entries of X(ν)−1 are all O(1/ν).
In fact the entries of the matrix of cofactors are polynomials in ν of degree at most three,
while the determinant of X(ν) is a quartic polynomial in ν given by (4.2). Recalling that
ν = 2 is the largest resonance, and that ν = j/Q where Q = 2 or 3, we can therefore find
a constant µ such that

‖X(ν)−1‖ ≤ µ

j
; ν > 2. (6.1)
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We denote by xj the vector (aj , bj , cj , ej ). Let κ = 2(E11 +E22 + 2E12). Now choose
ρ such that

‖xi‖ ≤ (µκ)i−1ρi (6.2)

for i up to and including the last resonance.
We claim that if the estimate (6.2) holds for i ≤ j − 1, where j is greater than the last

resonance, it also holds for i = j . For, the recursion relation (4.1) tells us that

xj = X(ν)−1vj ,

where vj is given by the right-hand side of (4.1). Now

‖vj‖≤(4E12 + 2E11 + 2E22)(j−1)(µκ)i−1ρi(µκ)j−i−1ρj−i≤(j − 1)µj−2κj−1ρj

so, from (6.1)

‖xj‖ ≤ ‖X(ν)−1‖‖vj‖ ≤ (µκ)j−1ρj ,

proving the claim.
It now follows by induction that the estimate (6.2) holds for all i. Therefore the formal

series solutions we have found are actually of the form f (s1/2), (f (s1/3), respectively),
where f is given by a Laurent series convergent on a punctured disc about the origin.

Combining the above and the results in the previous sections, we obtain the following
theorem.

Theorem 6.1. Consider the system of equations (2.3)–(2.6) with E given by (2.7).

1. If n 	= 9, 10, there are only two rational resonances.
2. If n = 9 or 10, all resonances are rational. If d1 = d2 = 5 we have a family of solutions

meromorphic in a rational power of s, depending on the full number of parameters (i.e.
four). Otherwise, we have a three-parameter family of such solutions.

The Einstein equations (with zero Einstein constant) for the doubly warped product metric

dt2 + f1(t)
2g1 ⊕ f2(t)

2g2, (6.3)

where (Yi, gi) are Einstein, nonRicci-flat, metrics, are equivalent to (2.3)–(2.6) with the
added constraint that the flow should lie in the zero level set of the Hamiltonian H̄ . We shall
see in Section 8 that imposing the constraint H̄ = 0 corresponds to fixing the parameter
corresponding to the resonance ν = 2.

So the Painlevé analysis suggests that the Einstein equations for metrics of the form (6.3)
should be more tractable in dimension 10 and 11 than in other dimensions, and should be
particularly well-behaved when d1 = d2 = 5.

Remark 6.2. In [5,6] we looked for conserved quantities for the Einstein
equations. In particular, we looked for solutions F, φ to Eq. (1.2), where F, φ are given by
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expansions

F =
∑
b∈Rr

Fb eb·q, φ =
∑
b∈Rr

φb eb·q,

and Fb, φb are polynomial in pi , and are zero for all but finitely many b. We defined the
level of b to be

∑
bi .

Let us now specialise to case (I) of Section 1. As mentioned there, we were able in our
earlier paper [6] to construct a conserved quantity for the three values of d1, d2 given in
(1.3). We did this by exploiting a factorisation

J = (c · ∇J )θ,

where c lies on the null cone of J , and θ is a certain linear form in pi . In the expansions for
the solutions F, φ to (1.2), c was a vector of minimal level.

Now, the factorisation of J may be written as

n(n− 1)J = ((d2∆− 1)p1 − (d1∆+ 1)p2)((d1∆− 1)p2 − (d2∆+ 1)p1),

where∆ = √
(n− 1)/d1d2. A necessary condition to get conserved quantities involving ra-

tional powers ofpi, eqi from this strategy will therefore be that∆ is rational, or equivalently
that d1d2(n− 1) is a perfect square.

If we now combine this condition with the requirement suggested by Painlevé analysis
that n+ 1 = 10 or 11, we are left with precisely the three cases (1.3) studied in [6]. One of
these cases is that of d1 = d2 = 5.

7. The second family

Now we turn to case (II) of Section 1 when E is given by (2.8) in Eqs. (2.3)–(2.6). We
first observe that if d2 = 2, then E12 = 0, and so the equations decouple and are trivially
integrable. The case when d1 = 1 corresponds to the Bérard Bergery–Page–Pope examples
and the case d2 = 1 is ruled out by the assumption that A2 	= 0. Therefore, we will exclude
these special dimensions from now on.

Performing computations similar to those in Sections 3 and 4, we now find that all leading
exponents must be nonzero and that there are three possibilities for the leading terms of a
Painlevé expansion as follows:

1. N1 = N2.


M1

M2

N1

N2


 =




−2

−2

−1

−1


 ,




a0

b0

c0

e0


 = 1

n− 1




n+ d1

−d1

−n− d1

d1


 ,
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2. N1 < N2.




M1

M2

N1

N2


 =




−2

−2

(
d2 − 2

d2 − 1

)
−1

3 − d2

d2 − 1



,




a0

b0

c0

e0


 =




d2

d2 − 1
N2e0

d2

1 − d2
e0



,

where e0 is a free parameter.
3. N2 < N1.




M1

M2

N1

N2


 =




2d1(d2 − 2)

4d1 + d2 − d1d2

−2

d2(d1 + 1)

4d1 + d2 − d1d2
−1



,




a0

b0

c0

e0


 =




N1c0

−d1d2

4d1 + d2 − d1d2

c0

d1d2

4d1 + d2 − d1d2



,

where c0 is a free parameter and 4d1 + d2 − d1d2 must be positive in order to arrange
that N2 < N1. Note also that N1 = M1 + 1.

Case (1) is similar to that discussed in the previous sections. The recursion relation is
again (4.1), but with the new values for a0, b0, and Eij. The determinant of the coefficient
matrix X(ν), where ν = j/Q, factorises as

(ν + 1)(ν − 2)(ν2 − ν + η),

where

η = 2

1 − n

(
1 + 2d1

d2

)
.

The upshot is that we have four rational roots if

(n− 1)d2((n− 1)d2 + 8(n+ d1)) (7.1)

is a perfect square, and only two rational roots otherwise. In the former case, we have exactly
two positive resonances (ν = 2 and one of the roots of ν2 − ν + η). The compatibility
condition always holds as in Lemma 5.1, so we have a three-parameter Painlevé expansion.
The proof of convergence in Section 6 carries over provided that we take absolute values
of Eij in the definition of κ .

Remark 7.1. We do not know how to generate in closed form all (d1, d2) so that (7.1) is
a square. Certainly this is the case when d1 = 1 or when d2 = 2. One can also check that
it is a square when d1(d2 − 9) = 4d2, which is the condition under which we were able to
produce generalised first integrals in [6] for this family. However, one can also check that
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there are other solutions of the rationality condition (7.1), e.g. (d1, d2) = (23, 32), (49, 50),
(56, 70), (42, 128), (49, 121).

In case (2), the recursion is


ν 0 −2E11a0 0

0 ν −2E12b0 0

−1 0 ν − 1 0

0 −1 0 ν +N2







aj

bj

cj

ej




=




2E11

(∑j−1
i=1 aicj−i

)
+ 2E12

(∑j−Q(N2+1)
i=0 aiej−Q(N2+1)−i

)
2E12

(∑j−1
i=1 bicj−i

)
+ 2E22

(∑j−Q(N2+1)
i=0 biej−Q(N2+1)−i

)
0

0



. (7.2)

The resonances are now found to be −1, 0,−N2, 2 (the resonance ν = 0 corresponds to
the freedom in the choice of e0). Note that −N2 = (d2 − 3)/(d2 − 1), so if d2 is even it is
natural to take

Q = d2 − 1,

and hence

N2Q = 3 − d2, Q(N2 + 1) = 2.

One then checks that ker(X(−N2)) and ker(X(−N2)
T) are spanned, respectively, by



0

0

0

1


 ,




(d2 − 1)(d2 − 3)e0

d2(d2 + 1)

(d2 − 3)2e0

−N2d2(d2 + 1)


 ,

and ker(X(2)) and ker(X(2)T) are spanned, respectively, by


d2 + 1

(d2 + 1)E12b0

d2 + 1

(d2 − 1)E12b0


 ,




1

0

2

0


 .

Lemma 7.2. The compatibility condition at ν = −N2 is always satisfied if d2 is even.
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Proof. The vector on the right-hand side of the recursion at this stage (i.e. j = −N2Q) is

2




E11
∑d2−4

i=1 aicd2−3−i + E12
∑d2−5

i=0 aied2−5−i

E12
∑d2−4

i=1 bicd2−3−i + E22
∑d2−5

i=0 bied2−5−i

0

0



. (7.3)

An induction using the recursion relation (7.2) shows that ai, bi, ci, ei vanish for all odd i
less than −N2Q = d2 − 3. Since d2 is even, it now follows that the each of the four sums
in (7.3) vanishes, proving that the compatibility condition holds. �

Remark 7.3. When d2 is odd, the compatibility condition at ν = −N2 is not always
satisfied. We now take Q to be 1

2 (d2 − 1) and so Q(N2 + 1) = 1 instead. Since N2 	= 0,
we have d2 	= 3. When d2 = 5, −N2Q = 1, and the compatibility condition is given by

(5 − 1)(5 − 3)E12a0e
2
0 + 5(5 + 1)E22b0e0 = 0.

Substituting the values of the constants on the left-hand side, one obtains 3(1 + 5/d1) > 0.
Indeed, one may use maple to compute the compatibility condition at ν = −N2 for

larger odd values of d2. Writing d2 = 2k + 3, the compatibility condition is, up to a factor
of the form Cke

k+1
0 d−k

1 , where Ck is a nonzero constant, a polynomial of degree k in d1

with integer coefficients. Hence the compatibility condition is satisfied whenever we have
a root of this polynomial which is a positive integer. Checking the roots using maple for
d2 ≤ 45 we find that there are always precisely two rational roots: −d2 and 4d2/(d2 − 9).
Therefore the compatibility condition holds for those values of d1 and d2 for which we
found generalised first integrals in [6, Section 5].

Lemma 7.4. The compatibility condition at ν = 2 holds assuming that all earlier recursion
relations hold.

Proof. We first give the proof in the case when d2 is even.
The condition at ν = 2 (i.e. j = 2Q) is

E11

2Q−1∑
i=1

aic2Q−i + E12

2Q−2∑
i=0

aie2Q−2−i = 0.

Now, using the relation ai = (i/Q − 1)ci from (7.2), and an argument similar to that in
Lemma 5.1, we find that the first sum is zero. The second sum becomes

E12

2Q−2∑
i=0

(
i

Q
− 1

)
cie2Q−2−i . (7.4)

Notice that in the above step we have not used the parity of d2.
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In order to show that (7.4) is zero, we use the second equation coming from the recursion
at j = 2Q− 2. That is

(
2Q− 2

Q

)
b2Q−2 − 2E12b0c2Q−2 = 2E12

2Q−3∑
i=1

bic2Q−2−i + 2E22

2Q−4∑
i=0

bie2Q−4−i .

(7.5)

The rightmost sum may be rewritten as

2Q−4∑
i=0

(
N2 + i

Q

)
eie2Q−4−i =

2Q−4∑
i=0

(
i + 2

Q
− 1

)
eie2Q−4−i .

We can now change to a new index k = 2Q− 4 − i, and the sum becomes

2Q−4∑
i=0

(
1 − k + 2

Q

)
eke2Q−4−k.

This shows that the rightmost sum in (7.5) is zero.
Eq. (7.5) is now equivalent to(

2Q− 2

Q

)(
N2 + 2Q− 2

Q

)
e2Q−2 − 2E12b0c2Q−2

= 2E12

2Q−3∑
i=1

(
N2 + i

Q

)
eic2Q−2−i ,

which can be rewritten as

(
2Q− 2

Q

)
e2Q−2 − 2E12b0c2Q−2 = 2E12

2Q−3∑
i=1

(
i + 2

Q
− 1

)
eic2Q−2−i .

Next we let k = 2Q− 2 − i, and obtain

(
2Q− 2

Q

)
e2Q−2 − 2E12b0c2Q−2 = 2E12

2Q−3∑
k=1

(
1 − k

Q

)
e2Q−2−kck.

Using our expressions for b0, c0, e0, and E12, we see that this is

−2E12e2Q−2c0 − 2E12

(
1 − 2Q− 2

Q

)
e0c2Q−2 = 2E12

2Q−3∑
k=1

(
1 − k

Q

)
e2Q−2−kck,

yielding the vanishing of (7.4) as required.
If d2 is odd, then Q = 1

2 (d2 − 1). If all earlier recursion relations hold, then using again
the second equation of the recursion at j = d2 − 2 = 2Q − 1 in place of (7.5) in an
analogous computation will give us the desired result. �
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In case (3) the recursion relation is given by


ν 0 0 −2E12a0

0 ν 0 −2E22b0

−1 0 ν +N1 0

0 −1 0 ν − 1







aj

bj

cj

ej




=




2E12(
∑j−1

i=1 aiej−i )+ 2E11(
∑j−Q(N1+1)

i=0 aicj−Q(N1+1)−i )

2E22(
∑j−1

i=1 biej−i )+ 2E12(
∑j−Q(N1+1)

i=0 bicj−Q(N1+1)−i )

0

0



. (7.6)

The resonances are −1, 0,−N1 and 2. Since −N1 is negative, we get at most a three-
parameter family of Painlevé solutions. We will show below that we always get exactly a
three-parameter family of such solutions, which are actually meromorphic if d2 > 3.

First we observe that the condition 4d1 + d2 − d1d2 > 0 can be rewritten as

(4 − d2)d1 > −d2,

and if d2 > 4, then we have

d1 < 1 + 4

d2 − 4
.

Since we are excluding the values d1 = 1 and d2 = 1, 2, we obtain Table 1 of possible
values.

Hence N1 + 1 = M1 + 2 is a positive integer for 4 ≤ d2 ≤ 7 and in these cases we can
take Q in the Painlevé expansions to be 1. We can take Q = 1 as well when d2 = 3 = d1.
In these cases, note that N1 + 1 ≥ 3 and resonance occurs at j = 2. Since the right-hand
side of (7.6) is 0 when j = 1, it follows that a1 = b1 = c1 = e1 = 0. Hence the right-hand
side of (7.6) at j = 2 is also 0. So the compatibility condition holds automatically.

It remains to consider the case when d2 = 3 and d1 > 3. It is natural to chooseQ = d1+3,
but in any case we need to have 2 = j0/Q and N1 + 1 = j1/Q for positive integers j0 and
j1. Because N1 + 1 = 2(2d1 + 3)/(d1 + 3) > 2, we have j0 < j1 = Q(N1 + 1). Since the

Table 1

d2 d1 n 4d1 + d2 − d1d2 M1

3 d1 d1 + 3 d1 + 3 2d1/(d1 + 3)
4 d1 d1 + 4 4 d1

5 2 7 3 4
5 3 8 2 9
5 4 9 1 24
6 2 8 2 8
7 2 9 1 20
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kernel of the transpose of the coefficient matrix in (7.6) for ν = 2 is spanned by (0, 1, 0, 2),
the compatibility condition is given by

j0−1∑
i=0

biej0−i = 0.

That this holds now follows from the argument in the proof of Lemma 5.1.

Remark 7.5. The convergence proof of Section 6 will again work in cases (2) and (3),
provided we let κ = 2(|E11| + |E22| + 2|E12|) and choose µ, ρ so that µκ, ρ > 1. (This is
to ensure that the (µκ)j−4, ρj−2 terms in the estimate for the right-hand side of (7.2) are
dominated by (µκ)j−2, ρj .)

In summary we obtain the following:

Theorem 7.6. The system of equations given by (2.3)–(2.6), with E given by (2.8), has a
maximal family of solutions meromorphic in a rational power of s if one of the following
conditions holds:

1. d2 is even
2. d1(d2 − 9) = 4d2, i.e. (d1, d2) = (5, 45), (6, 27), (7, 21), (8, 18), (10, 15), (13, 13),

(16, 12), (22, 11), (40, 10). (These are the examples of [6].)

Remark 7.7. When d2 = 2m, the system (2.3)–(2.6) can be realised geometrically when-
ever there are m − d1 − 1 linearly independent vector fields on Sm−1. (In particular, d1 =
m − 1 is always possible and if d1 < m − 1, then m should be even.) To see this one can
simply modify the arguments on [6, pp. 240–241], replacing the vector ε bym−d1 mutually
orthogonal vectors of the form

±ε1 + · · · ± εm,

where ε1, . . . , εm is the standard basis of Rm. Such a set of vectors can be obtained by
evaluating the orthogonal vector fields coming from the Clifford module structure of Rm

(over the Clifford algebra of Rm−d1−1) at the point (1, . . . , 1) ∈ Sm−1.

8. Concluding remarks

We would now like to relate the series solutions of the system (2.3)–(2.6) that we have
obtained to solutions of the Ricci-flat Einstein equations.

First we observe that fixing the free parameter at the top resonance (ν = 2) of our Painlevé
solutions is equivalent to satisfying the constraint condition H̄ = 0. By Proposition 2.1 we
therefore obtain local solutions of the original Ricci-flat equations.

For example, in cases (I) and II(1), the constraint equation can be written as
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ak + bk + 2ck + 2ek = E11

k−1∑
j=1

cj ck−j + 2E12

k−1∑
j=1

cj ek−j + E22

k−1∑
j=1

ej ek−j ,

whereν = k/Q = 2. The kernel of the recursion operatorX(2) is spanned by (c0, e0, c0, e0).
So the constraint can be satisfied provided that

(1, 1, 2, 2) · (c0, e0, c0, e0) 	= 0.

But the left-hand side is

3(c0 + e0) = 3

detE

(
1

d1
+ 1

d2

)
,

which is clearly nonzero. The arguments for cases II(2) and II(3) are similar.
Next we analyse the local Ricci-flat metrics given by the Painlevé solutions which satisfy

the constraint H̄ = 0. First we consider case (I). We have

f 2
1 = x

(1−d2)/(n−1)
1 x

d2/(n−1)
2 , f 2

2 = x
d1/(n−1)
1 x

(1−d1)/(n−1)
2 .

It follows that

dt = sn/(1−n)(analytic function in s1/Q) ds,

and hence we have −t ∼ s1/(1−n). As s tends to 0, the arclength coordinate t tends to
negative infinity. So the metric is complete at infinity. Moreover, f 2

i are of the form t2

(analytic function in (−t)−1) and the volume growth is Euclidean. Indeed, our expressions
for the leading terms are themselves an exact solution of (2.3)–(2.6), corresponding to the
Ricci-flat cone over the product Einstein metric on Y1 × Y2. Modulo homothety then, we
have a one-parameter family of solutions when d1 = d2 = 5 and one solution in the other
cases.

For case (II) we have

f 2
1 = x

(2−d2)/(n−1)
1 x

(d2−1)/(n−1)
2 , f 2

2 = x
(d1+1)/(n−1)
1 x

−d1/(n−1)
2 .

In subcase (1) we obtain the same conclusions as in case (I) with the exception that f 2
i

could be of the form t2 (analytic function in (−t)−1/k0 ), where k0 is a positive integer.
For subcase (2), we have

dt = sd2/(1−d2)(analytic function in s1/Q) ds,

and so −t ∼ s1/(1−d2). It follows that as s tends to 0, the arclength t tends to minus infinity.
So the metric is complete at infinity. Moreover, f 2

1 is an analytic function in (−t)−1 while f 2
2

is of the form t2 (analytic function in (−t)−1). The volume growth is therefore ∼ (−t)d2+1,
as in the Euclidean Taub-NUT space. Modulo homothety we would have a one-parameter
family of such solutions.

Finally for subcase (3), as s tends to 0, the arclength t tends to a finite limit t0. Moreover,
f 2

1 ∼ (t − t0)
−2d2/(4d1+d2) while f 2

2 ∼ (t − t0)
4d1/(4d1+d2).
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